1. Определение выбросов газообразных вредных веществ
1.1. Введение
Подраздел 1.2 настоящего дополнения и рисунки Д.5 и Д.6 содержат детальные описания рекомендуемых систем отбора проб и анализа. Поскольку при различных конфигурациях таких систем могут быть достигнуты совпадающие результаты, точное соответствие рисункам Д.5 и Д.6 не требуется. Допускается использование дополнительных компонентов, таких как измерительная аппаратура, вентили, соленоиды, насосы, переключатели, для получения дополнительной информации и координации работы взаимодействующих систем. Другие компоненты, функционирование которых не вызвано необходимостью обеспечить точность работы отдельных систем, могут быть исключены, если их исключение основано на проверенной инженерной практике.
Рисунок Д.5. Схема установки для анализа
неразбавленных отработавших газов с определением
концентраций CO, , HC
(только для испытания ESC)
Рисунок Д.6. Схема установки для анализа
разбавленных отработавших газов с определением
концентраций CO, , HC
(для испытания ETC,
факультативно - для испытания ESC)
1.2. Описание аналитических систем
Аналитическая система для определения газообразных выбросов вредных веществ в неразбавленных (рисунок Д.5, только для испытания ESC) или разбавленных (рисунок Д.6, для испытаний ETC и ESC) отработавших газах, приводимая ниже, основана на использовании:
- анализатора HFID для измерения концентрации углеводородов;
- анализатора NDIR для измерения концентрации оксида углерода и диоксида углерода;
- анализатора HCLD или эквивалентного анализатора для измерения концентрации оксидов азота.
Отбор проб для анализа всех компонентов допускается проводить с помощью одного зонда или двух зондов, расположенных в непосредственной близости один от другого и имеющих внутреннее разделение для соединения их с разными анализаторами. Необходимо обеспечить отсутствие конденсации веществ из отработавших газов (включая влагу и серную кислоту) во всех точках аналитической системы.
1.2.1. Компоненты аналитической системы, изображенные на рисунках Д.5 и Д.6:
EP - выпускная труба (рисунки Д.5 и Д.6).
SP1 - пробоотборник для отработавших газов (рисунок Д.5).
Рекомендуется прямой пробоотборник из нержавеющей стали с нескольким отверстиями и заглушенным торцом. Внутренний диаметр пробоотборника не должен превышать внутренний диаметр пробоотборной магистрали. Толщина стенок пробоотборника должна быть не более 1 мм. В пробоотборнике должно быть не менее трех отверстий в трех различных радиальных плоскостях, имеющих размеры, обеспечивающие отбор потоков с приблизительно одинаковыми расходами. Диаметр пробоотборника должен составлять не менее 80% диаметра выпускной трубы. Допускается установка одного или двух пробоотборников.
SP2 - пробоотборник для анализа HC в разбавленных отработавших газах (рисунок Д.6).
Пробоотборник должен:
- быть расположен в начале подогреваемой пробоотборной магистрали HSL1 и занимать ее отрезок длиной от 254 до 762 мм;
- иметь внутренний диаметр не менее 5 мм;
- быть вставлен в туннель для разбавления (DT) (см. 2.3 настоящего дополнения, рисунок Д.18) в точке, где обеспечено хорошее перемешивание разбавляющего воздуха и отработавших газов, а именно, на расстоянии, приблизительно, 10 диаметров туннеля по направлению потока от точки, в которой отработавшие газы входят в туннель для разбавления;
- быть расположен на достаточном расстоянии по радиусу от других пробоотборников и стенок туннеля, чтобы не быть подвергнутым воздействию турбулентных потоков и завихрений;
- быть подогреваемым так, чтобы температура газового потока повышалась до 463 К +/- 10 К (190 °C +/- 10 °C) на выходе из пробоотборника.
SP3 - пробоотборник для анализа CO, в разбавленных отработавших газах (рисунок
Д.6).
Пробоотборник должен:
- находиться в той же плоскости, что и SP2;
- быть расположен на достаточном расстоянии по радиусу от других пробоотборников и стенок туннеля, чтобы не быть подвергнутым воздействию турбулентных потоков и завихрений;
- быть изолированным и подогреваемым по всей длине до температуры 328 К (55 °C) для предотвращения конденсации влаги.
HSL1 - подогреваемая пробоотборная магистраль (рисунки Д.5 и Д.6).
По пробоотборной магистрали проба газа перетекает из единого пробоотборника к точке разделения потоков и в анализатор HC.
Пробоотборная магистраль должна:
- иметь внутренний диаметр от 5 до 13,5 мм;
- быть изготовлена из нержавеющей стали или тефлона;
- поддерживать температуру стенок 463 К +/- 10 К (190 °C +/- 10 °C) при измерении в каждой отдельно контролируемой подогреваемой секции при температуре отработавших газов в пробоотборнике не более 463 К (190 °C);
- поддерживать температуру стенок выше 453 К (180 °C) при температуре отработавших газов в пробоотборнике выше 463 К (190 °C);
- поддерживать температуру стенок выше 463 К +/- 10 К (190 °C +/- 10 °C) непосредственно перед подогреваемым фильтром F2 и детектором HFID.
HSL2 - подогреваемая пробоотборная магистраль для (рисунки Д.5 и
Д.6).
Пробоотборная магистраль должна:
- поддерживать температуру стенок от 328 К до 473 К (от 55 °C до 200 °C) вплоть до конвертера C, где используют охлаждающую ванну B, и анализатора, где охлаждающую ванну B не используют;
- быть изготовлена из нержавеющей стали или тефлона.
SL - пробоотборная магистраль для CO и (рисунки Д.5 и Д.6).
Пробоотборная магистраль должна быть изготовлена из тефлона или нержавеющей стали. Она может быть как подогреваемой, так и неподогреваемой.
BK - мешок для определения фоновой концентрации вредных веществ (факультативно, только на рисунке Д.6).
Для отбора проб с фоновой концентрацией вредных веществ.
BG - мешок для отбора проб (факультативно, только для CO и , рисунок Д.6).
Для отбора проб и определения концентраций вредных веществ.
F1 - подогреваемый первичный фильтр (рисунки Д.5 и Д.6, факультативно).
Температуру следует поддерживать такую же, как и для пробоотборной магистрали HSL1.
F2 - подогреваемый фильтр (рисунки Д.5 и Д.6).
Фильтр должен осаждать все вредные частицы из пробы газа до ее попадания в анализатор. Температуру следует поддерживать такую же, как и для пробоотборной магистрали HSL1. Фильтр подлежит замене при необходимости.
P - подогреваемый насос для перекачки проб (рисунки Д.5 и Д.6).
Насос следует подогреть до температуры пробоотборной магистрали HSL1.
HC - нагреваемый плазменно-ионизационный детектор (HFID) для определения концентрации углеводородов (рисунки Д.5 и Д.6).
Температуру следует поддерживать в диапазоне 453 К - 473 К (180 °C - 200 °C).
CO, -
анализатор NDIR для определения концентраций оксида углерода и диоксида углерода
(факультативно, для определения коэффициента разбавления при измерении
концентрации вредных частиц, рисунки Д.5 и Д.6).
NO - анализатор CLD или HCLD для определения оксидов азота (рисунки Д.5 и Д.6).
При использовании анализатора HCLD температуру следует поддерживать в диапазоне 328 К - 473 К (55 °C - 200 °C).
C - конвертер (рисунки Д.5 и Д.6).
Конвертер используют для каталитического преобразования в NO перед анализом в
анализаторе CLD или HCLD.
B - охлаждающая ванна (факультативно, рисунки Д.5 и Д.6).
Для охлаждения и конденсации влаги из пробы отработавших газов. В ванне необходимо поддерживать температуру в диапазоне 273 К - 277 К (0 °C - 4 °C) с помощью льда или искусственного охлаждения. Использование ванны факультативно, если на работу анализатора не влияет водяной пар (см. 1.9.1 и 1.9.2 дополнения 5 к Приложению Д). Если влага удаляется с помощью конденсации, то необходимо отслеживать температуру газа в пробе или точку росы либо во влагоотделителе, либо ниже по направлению потока. Температура газа в пробе или точка росы не должна быть выше 280 К (7 °C). Применение химических осушителей для удаления влаги из пробы не допускается.
T1, T2, T3 - датчик температуры (рисунки Д.5 и Д.6).
Для измерения температуры газового потока.
T4 - датчик температуры (рисунки Д.5 и Д.6).
Для отслеживания температуры в конверторе - NO.
T5 - датчик температуры (рисунки Д.5 и Д.6).
Для отслеживания температуры в охлаждающей ванне.
G1, G2, G3 - датчик давления (рисунки Д.5 и Д.6).
Для измерения давления в пробоотборных магистралях.
R1, R2 - регулятор давления (рисунки Д.5 и Д.6).
Для регулирования давления потоков воздуха и топлива, соответственно, поступающих в анализатор HFID.
R3, R4, R5 - регулятор давления (рисунки Д.5 и Д.6).
Для регулирования давления в пробоотборных магистралях и потоках, направляемых в анализаторы.
FL1, FL2, FL3 - расходомер (рисунки Д.5 и Д.6).
Для отслеживания расхода в обходных каналах анализаторов.
FL4, FL5, FL6 - расходомер (факультативно, рисунки Д.5 и Д.6).
Для отслеживания расходов через анализаторы.
V1, V2, V3, V4, V5 - селекторный клапан (рисунки Д.5 и Д.6).
Управляет подачей в анализаторы (по выбору) потоков пробы отработавших газов, калибровочного или нулевого газа.
V6, V7 - электромагнитный клапан (рисунки Д.5 и Д.6).
Для перепуска потока по обходному каналу в обход конвертора C (конвертора
- NO).
V8 - игольчатый клапан (рисунки Д.5 и Д.6).
Для уравнивания потоков через конвертор C и обходной канал.
V9, V10 - игольчатый клапан (рисунки Д.5 и Д.6).
Для регулирования потоков, идущих к анализаторам.
V11, V12 - рычажный клапан (рисунки Д.5 и Д.6).
Для удаления конденсата из ванны B.
V13 - селекторный клапан (факультативно, рисунок Д.6).
Направляет поток в мешок BG или BK (при наличии).
1.3. Анализ NMHC (только для газовых двигателей, работающих на ПГ)
1.3.1. Метод газовой хроматографии (метод GC, рисунок Д.7)
Рисунок Д.7. Диаграмма потоков при анализе пробы
отработавших газов на содержание метана (по методу GC)
При применении метода GC пробу небольшого заранее измеренного объема вводят в колонну, где она захватывается инертным транспортирующим газом. В колонне различные компоненты разделяются в соответствии с их точками кипения, в результате чего они вымываются из колонны в различные моменты времени. Затем эти компоненты проходят через детектор, который вырабатывает электрический сигнал, зависящий от их концентрации. Поскольку этот метод не предназначен для непрерывного анализа, его применяют только совместно с методом отбора проб в мешок, описанным в 3.4.2 дополнения 4 к Приложению Д.
Для NMHC используют автоматизированный метод GC с детектором FID.
Отработавшие газы накапливаются в мешке для отбора проб, из которого часть газов
отбирают и направляют в газовый хроматограф. Пробу в колонне Порапака разделяют
на две части (одна часть - , CO, воздух, другая - NMHC,
, вода). Колонна с молекулярным ситом отделяет
от воздуха и CO перед
поступлением пробы в детектор FID, где измеряют концентрацию
(метана). Полный цикл от
ввода одной пробы до ввода другой занимает 30 с. Для определения концентрации
NMHC концентрацию
вычитают из суммарной концентрации HC (см. 4.3.1 дополнения 4 к
Приложению Д).
На рисунке Д.7 показана типовая установка GC для определения наиболее распространенным
методом. Допускается применение других методов GC, базирующихся на проверенной
инженерной практике.
Компоненты, показанные на рисунке Д.7:
PC - колонна Порапака.
Колонна Porapak N, 180/300 мкм (ячейки 50/80), длина 610 мм, внутренний диаметр 2,16 мм, должна начать работу и быть выдержана с транспортирующим газом не менее 12 ч при 423 К (150 °C) перед вводом в эксплуатацию.
MSC - колонна с молекулярным ситом.
Тип 13Х, 250/350 мкм (ячейки 45/60), длина 1200 мм, внутренний диаметр 2,16 мм, должна начать работу и быть выдержана с транспортирующим газом не менее 12 ч при 423 К (150 °C) перед вводом в эксплуатацию.
OV - печь.
Для поддержания стабильного температурного режима колонн и вентилей (клапанов) при работе анализатора и для предварительного выдерживания колонн при температуре 423 К (150 °C).
SLP - петлеобразный канал для пробы газа.
Труба из нержавеющей стали достаточной длины для обеспечения объема, приблизительно, 1 см3.
P - насос.
Для подачи пробы в газовый хроматограф (GC).
D - осушитель.
Осушитель, содержащий молекулярное сито, применяют для отделения влаги и других примесей, которые могут содержаться в транспортирующем газе.
HC - плазменно-ионизационный детектор (FID) для измерения концентрации метана.
V1 - клапан для впуска пробы.
Для впуска пробы, отобранной из мешка для отбора проб и прошедшей через пробоотборную магистраль SL (см. рисунок Д.6). Клапан должен иметь малый "мертвый" объем, быть газонепроницаемым и способным к нагреву до 423 К (150 °C).
V3 - селекторный клапан.
Для подачи по выбору калибровочного газа, пробы отработавших газов или для перекрытия потока.
V2, V4, V5, V6, V7, V8 - игольчатый клапан.
Для управления потоками в системе.
R1, R2, R3 - регулятор давления.
Для управления потоками топлива (транспортирующего газа), пробы газа и воздуха соответственно.
FC - капиллярная трубка в потоке.
Для управления расходом воздуха, поступающего в HC (детектор FID).
G1, G2, G3 - датчик давления.
Для управления потоками топлива (транспортирующего газа), пробы газа и воздуха соответственно.
F1, F2, F3, F4, F5 - фильтр.
Металлокерамические фильтры для предотвращения попадания абразивных частиц в насос и приборы.
FL1 - расходомер.
Для измерения расхода пробы, проходящей по обходному каналу.
1.3.2. Метод отделения фракций, не содержащих метан (NMC, рисунок Д.8)
Метод отбора проб с помощью мешка для отбора проб
Интеграционный метод
Рисунок Д.8. Диаграмма потоков при анализе
пробы отработавших газов на содержание метана
с помощью отделителя фракций, не содержащих метан (NMC)
Отделитель окисляет все углеводороды, за исключением метана , превращая их в
и
, так что при прохождении пробы
через NMC детектором FID определяется только
. Если используют мешок для накопления проб, то в магистраль
SL (см. 1.2 настоящего дополнения, рисунок Д.6) устанавливают систему отклонения
потока, с помощью которой поток может быть направлен либо в отделитель, либо в
обход его (см. рисунок Д.8, верхняя часть). Для измерения углеводородов, не
содержащих метан (NMHC), детектором FID должны быть учтены и зафиксированы
значения как HC, так и
. Если
используют интеграционный метод, то параллельно обычно устанавливаемому
детектору FID в пробоотборную магистраль HSL1 устанавливают отделитель NMC
последовательно со вторым детектором FID (см. 1.2 настоящего дополнения, рисунок
Д.6 и рисунок Д.8, нижняя часть). Для измерения NMHC необходимо наблюдать и
фиксировать показания обоих детекторов FID.
Прежде чем использовать отделитель в испытаниях, необходимо при температуре
не менее 600 К (327 °C) получить характеристики каталитического воздействия на
показания и
присутствия влаги в
количестве, типичном для потока отработавших газов. Необходимо также знать точку
росы и уровень содержания кислорода
в потоке отработавших газов пробы. Кроме того, необходимо
зафиксировать чувствительность детектора FID к
(см. 1.8.2 дополнения 5 к Приложению Д).
Компоненты, показанные на рисунке Д.8:
NMC - отделитель фракций, не содержащих метан.
Для окисления всех углеводородов, за исключением метана.
HC - нагреваемый плазменно-ионизационный детектор (HFID).
Для измерения концентраций HC и . Температуру при этом следует поддерживать в диапазоне 453 К - 473 К
(180 °C - 200 °C).
V1 - селекторный клапан.
Для переключения (по выбору) на режим подачи пробы отработавших газов, нулевого или калибровочного газов. Клапан V1 идентичен клапану V2 на рисунке Д.6.
V2, V3 - электромагнитный клапан.
Для направления потока по обходному каналу в обход отделителя NMC.
V4 - игольчатый клапан.
Для взаимной регулировки потоков через отделитель NMC и по обходному каналу.
SL - пробоотборная магистраль для CO и .
HSL1 - подогреваемая пробоотборная магистраль для углеводородов.
2. Разбавление отработавших газов и определение содержания в них вредных частиц
2.1. Введение
Подразделы 2.2 - 2.4 настоящего дополнения и рисунки Д.9 - Д.20 содержат детальные описания рекомендуемых систем разбавления и отбора проб. Поскольку при различных конфигурациях таких систем могут быть достигнуты эквивалентные результаты, точное соответствие этим рисункам не требуется. Допускается использование дополнительных компонентов, таких как измерительная аппаратура, клапаны, насосы и переключатели, для получения дополнительной информации и координации работы взаимодействующих систем. Компоненты, использование которых необязательно для обеспечения необходимой точности функционирования систем, могут быть исключены, если их исключение основано на проверенной инженерной практике.
Рисунок Д.9. Система с частичным разбавлением потока,
изокинетическим пробоотборником и частичным отбором проб.
Управление с помощью вытяжного насоса SB
Рисунок Д.10. Система с частичным разбавлением потока,
изокинетическим пробоотборником и частичным отбором проб.
Управление с помощью нагнетательного насоса PB
Рисунок Д.11. Система с частичным
разбавлением потока, частичным отбором проб
и измерением концентрации или
Рисунок Д.12. Система с частичным разбавлением
потока, полным отбором проб, измерением концентрации
и использованием
углеродного баланса
Рисунок Д.13. Система с частичным разбавлением
потока, одинарной трубкой Вентури, частичным
отбором проб и измерением концентраций
Рисунок Д.14. Система с частичным разбавлением потока,
двумя трубками Вентури или двумя соплами, частичным
отбором проб и измерением концентраций
Рисунок Д.15. Система с частичным разбавлением
потока, разделением потока по нескольким трубам,
частичным отбором проб и измерением концентраций
Рисунок Д.16. Система с частичным разбавлением
потока, полным отбором проб и управлением расходом
Рисунок Д.17. Система с частичным разбавлением
потока, частичным отбором проб и управлением расходом
Рисунок Д.18. Система разбавления
полного потока отработавших газов
Рисунок Д.19. Система отбора проб вредных частиц (PSS)
Рисунок Д.20. Система двойного разбавления [DDS
(только для систем с полным потоком отработавших газов)]
2.2. Система частичного разбавления потока
Система разбавления, изображенная на рисунках Д.9 - Д.17, основана на разбавлении части потока отработавших газов. Разделение потока отработавших газов и последующий процесс разбавления могут быть осуществлены с помощью разбавляющих систем различных типов. Для последующего отбора вредных частиц весь поток разбавленных отработавших газов или его часть направляется к системе отбора проб вредных частиц (2.4 настоящего дополнения, рисунок Д.19). Первый метод - это метод полного отбора проб, второй - метод частичного отбора проб.
Способ расчета коэффициента разбавления зависит от используемой системы разбавления. Рекомендуются следующие системы:
Изокинетические системы (рисунки Д.9, Д.10).
В этих системах скорость и давление потока в отводящем патрубке должны совпадать с соответствующими параметрами основного потока отработавших газов и, поэтому, требуется обеспечение невозмущенного и однородного потока у входа в пробоотборник. Обычно это достигается использованием резонатора и трубы с прямым участком перед входом в пробоотборник. Коэффициент разделения потоков в этом случае рассчитывают на основе легкоизмеряемых величин, таких как диаметры труб. Следует отметить, что изокинезис используется только для выравнивания параметров потока, но не для определения соотношения геометрических размеров. Последнее, как правило, не является необходимым, так как размеры вредных частиц достаточно малы, и они перемещаются вместе с газовыми потоками.
Системы с регулированием потока и измерением концентрации (рисунки Д.11 - Д.15).
В этих системах проба отбирается из основного потока отработавших газов
благодаря регулированию потока разбавляющего воздуха и полного потока
разбавленных отработавших газов. Коэффициент разбавления определяют, основываясь
на концентрации индикаторных газов, таких как или
, естественным образом
присутствующих в отработавших газах двигателя. Измеряют концентрации в
разбавленных отработавших газах и в разбавляющем воздухе, в то время как
концентрация в неразбавленных отработавших газах может быть измерена
непосредственно или рассчитана на основе расхода топлива и уравнения углеродного
баланса при условии, что состав топлива известен. Контроль систем возможен по
расчетному коэффициенту разбавления (рисунки Д.11, Д.12) или по параметрам
потока в отводящем патрубке (рисунки Д.10, Д.11, Д.12).
Системы с регулированием потока и измерением расхода (рисунки Д.16 и Д.17).
В этих системах проба отбирается из основного потока отработавших газов благодаря регулированию потока разбавляющего воздуха и полного потока разбавленных отработавших газов. Коэффициент разбавления определяют, основываясь на разности расходов этих двух потоков. При этом требуется точная взаимная калибровка расходомеров, поскольку неточности в значениях расходов одного потока относительно другого могут привести к существенным ошибкам при высоких значениях коэффициента разбавления (от 15 и выше). Управление потоками значительно упрощается, если расход разбавленных отработавших газов поддерживать постоянным и изменять, по мере надобности, расход разбавляющего воздуха.
При использовании систем с частичным разбавлением следует избежать проблем, связанных с осаждением вредных частиц в отводящем патрубке, и удостовериться, что из отработавших газов двигателя извлекается представительная по составу проба. Необходимо также тщательно определять коэффициент разделения потоков. Использование описанных выше систем требует повышенного внимания к этим ключевым проблемам.
Неразбавленные отработавшие газы направляются из выпускной трубы EP в туннель для разбавления DT по отводящему патрубку TT через изокинетический пробоотборник ISP. Разность давлений отработавших газов в выпускной трубе и на входе в пробоотборник улавливается датчиком давления DPT. Сигнал от датчика передается на регулятор расхода FC1, который управляет вытяжным насосом SB для обеспечения нулевого перепада давления у входа в пробоотборник. При соблюдении этого условия скорости потоков отработавшего газа в выпускной трубе и пробоотборнике ISP одинаковы, и поток, проходящий через ISP по отводящему патрубку TT, представляет собой постоянную часть полного потока отработавших газов. Коэффициент разделения определяют отношением поперечных площадей EP и ISP. Расход потока разбавляющего воздуха измеряют расходомером FM1. Коэффициент разбавления рассчитывают на основании расхода разбавляющего воздуха и коэффициента разделения.
Неразбавленные отработавшие газы направляются из выпускной трубы EP в туннель для разбавления DT по отводящему патрубку TT через изокинетический пробоотборник ISP. Разность давлений отработавших газов в выпускной трубе и на входе в пробоотборник улавливается датчиком давления DPT. Сигнал от датчика DPT передается на регулятор расхода FC1, который управляет нагнетательным насосом PB, служащим для обеспечения нулевого перепада давления у входа в пробоотборник. Это достигается забором части потока разбавляющего воздуха, расход которого уже измерен расходомером FM1, и направлением его в подающий патрубок TT через сопло. При соблюдении этого условия скорости потоков отработавшего газа в выпускной трубе и пробоотборнике ISP одинаковы, и поток, проходящий через ISP по отводящему патрубку TT, представляет собой постоянную часть полного потока отработавших газов. Коэффициент разделения определяют отношением поперечных площадей EP и ISP. Разбавляющий воздух извлекается из туннеля для разбавления DT с помощью вытяжного насоса SB. Расход потока разбавляющего воздуха измеряют расходомером FM1 на входе в туннель DT. Коэффициент разбавления рассчитывают на основании расхода разбавляющего воздуха и коэффициента разделения потоков.
Неразбавленные отработавшие газы направляются из выпускной трубы EP в туннель
для разбавления DT через пробоотборник SP по отводящему патрубку TT.
Концентрации индикаторного газа (
или
) измеряют
в неразбавленном и разбавленном потоках отработавших газов, а также в
разбавляющем воздухе с помощью анализатора(ов) отработавших газов EGA.
Соответствующие сигналы передаются на регулятор расхода FC2, который регулирует
работу либо нагнетательного насоса PB, либо вытяжного насоса SB с целью
обеспечить соответствующие разделение потоков отработавших газов и коэффициент
разбавления в туннеле DT. Коэффициент разбавления рассчитывают исходя из
концентраций индикаторных газов в неразбавленных и разбавленных отработавших
газах и в разбавляющем воздухе.
Неразбавленные отработавшие газы направляются из выпускной трубы EP в туннель
для разбавления DT через пробоотборник SP по отводящему патрубку TT.
Концентрации измеряют в разбавленных отработавших газах и в разбавляющем
воздухе с помощью анализатора(ов) отработавших газов EGA. Сигналы, информирующие
о концентрации
и расходе
топлива
, передаются либо на
регулятор расхода FC2, либо на регулятор расхода FC3 системы отбора проб вредных
частиц PSS (см. рисунок Д.19). Регулятор FC2 управляет работой нагнетательного
насоса PB, регулятор FC3 - работой насоса P для подачи пробы в систему PSS (см.
рисунок Д.19), тем самым регулируя расходы потоков на входе в систему и выходе
из нее, что обеспечивает соответствующие разделение потоков отработавших газов и
коэффициент разбавления в туннеле DT. Коэффициент разбавления рассчитывают на
основе концентрации
и
расхода топлива
в
предположении наличия углеродного баланса.
Неразбавленные отработавшие газы направляются из выпускной трубы EP в туннель
для разбавления DT через пробоотборник SP по отводящему патрубку TT под
воздействием отрицательного давления, создаваемого в трубке Вентури VN,
расположенной в туннеле DT. Расход газового потока в патрубке TT зависит от
обмена энергией в зоне расположения трубки Вентури и, тем самым, зависит от
абсолютной температуры газа на выходе из патрубка TT. Следовательно, разделение
потоков отработавших газов для данного расхода в туннеле не является постоянным
и коэффициент разбавления при малых нагрузках несколько ниже, чем при высоких
нагрузках. Концентрации индикаторного газа (
или
) измеряют в неразбавленных и
разбавленных отработавших газах и в разбавляющем воздухе с помощью
анализатора(ов) отработавших газов EGA. Коэффициент разбавления рассчитывают на
основе полученных значений.
Неразбавленные отработавшие газы направляются из выпускной трубы EP в туннель
для разбавления DT через пробоотборник SP по отводящему патрубку TT с помощью
разделителя, включающего в себя комплект трубок Вентури (сопел). Первая трубка
(сопло) FD1 встроена в выпускную трубу EP, вторая FD2 - в патрубок TT. Кроме
того, должны быть установлены два регулирующих дросселя PCV1 и PCV2,
обеспечивающих неизменный уровень разделения потоков благодаря контролю
противодавления в выпускной трубе EP и давления в туннеле DT. Дроссель PCV1
расположен за пробоотборником SP (по направлению потока) в выпускной трубе EP, а
дроссель PCV2 - между нагнетательным насосом PB и туннелем DT. Концентрации
индикаторного газа (
или
) измеряют
в разбавленных и неразбавленных отработавших газах и разбавляющем воздухе с
помощью газового анализатора(ов) EGA. Его использование необходимо для проверки
степени разделения отработавших газов и, возможно, для регулировки дросселей
PCV1 и PCV2, чтобы обеспечить более точное управление разделением потоков.
Коэффициент разбавления рассчитывают на основе концентраций индикаторных
газов.
Неразбавленные отработавшие газы направляются из выпускной трубы EP в туннель
для разбавления по отводящему патрубку TT через разделитель потока FD3,
состоящий из нескольких труб, имеющих одинаковые геометрические параметры
(диаметры, длины, радиусы гибки) и вставленных в выпускную трубу EP. Через одну
из этих труб отработавшие газы направляются в туннель DT, а через остальные
проходят в демпфирующую камеру DC. Следовательно, значение коэффициента
разделения потоков отработавших газов зависит от общего числа труб в разделителе
FD3. Поддержание неизменного коэффициента разделения потоков требует нулевой
разности между давлениями в демпфирующей камере DC и на выходе из патрубка TT.
Эта разность давлений улавливается датчиком давлений DPT. Нулевая разность
давления обеспечивается подачей свежего воздуха в туннель DT в зону около выхода
из TT. Концентрации индикаторных газов (
или
)
измеряют в неразбавленных и разбавленных отработавших газах и в разбавляющем
воздухе с помощью анализатора(ов) отработавших газов EGA. Его (их) использование
необходимо для проверки разделения отработавших газов и возможно для управления
расходом подаваемого воздуха, чтобы более точно контролировать разделение
потоков отработавших газов. Коэффициент разбавления рассчитывают на основе
концентраций индикаторных газов.
Неразбавленные отработавшие газы направляются из выпускной трубы EP в туннель
для разбавления DT через пробоотборник SP и отводящий патрубок TT. Полный поток
в туннеле DT контролируется регулятором расхода FC3 и насосом для подачи проб P
в системе отбора проб вредных частиц PSS (см. рисунок Д.19). Поток разбавляющего
воздуха контролируется регулятором расхода FC2, который может использовать
расход отработавших газов , расход воздуха
или расход топлива
в качестве управляющего сигнала с целью обеспечить требуемое
разделение потоков отработавших газов. Расход потока из пробоотборника SP в
туннеле DT определяют как разность суммарного расхода и расхода разбавляющего
воздуха. Расход разбавляющего воздуха определяют расходомером FM1, суммарный
расход - расходомером FM3 в системе PSS (см. рисунок Д.19). Коэффициент
разбавления рассчитывают на основе этих двух расходов.
Неразбавленные отработавшие газы направляются из выпускной трубы EP в туннель
для разбавления DT через пробоотборник SP и отводящий патрубок TT. Разделение
потоков отработавших газов и их расход в туннеле DT контролирует регулятор
расхода FC2, управляя расходами (или скоростями), создаваемыми нагнетательным
насосом PB и вытяжным насосом SB соответственно. Это возможно, поскольку проба,
отбираемая системой отбора проб вредных частиц PSS, возвращается в туннель DT.
Возможно использование расхода отработавших газов , расхода воздуха
или расхода топлива
в качестве управляющего
сигнала для регулятора FC2. Расход разбавляющего воздуха измеряют расходомером
FM1, полный поток - расходомером FM2. Коэффициент разбавления рассчитывают на
основе этих двух расходов.
2.2.1. Компоненты, показанные на рисунках Д.9 - Д.17:
EP - выпускная труба.
Выпускную трубу можно изолировать. Для снижения тепловой инерции выпускной трубы рекомендуется отношение толщины трубы к ее диаметру не более 0,015. Применение гибких секций должно быть ограничено участками с отношением длины к диаметру не более 12. Сгибы необходимо свести к минимуму, чтобы уменьшить отложения внутри трубы. Если система включает в себя глушитель испытательного стенда, то его также можно изолировать.
В выпускной трубе, используемой с изокинетической системой, не должно быть колен, изгибов и резких изменений диаметра на участке, определяемом расстоянием не менее шести диаметров выпускной трубы до наконечника пробоотборника и трех диаметров выпускной трубы за ним (по направлению потока отработавших газов). Скорость газов в зоне пробоотборника должна составлять более 10 м/с, за исключением их скорости в режиме холостого хода. Колебания давления отработавших газов не должны превышать +/- 500 Па от среднего значения. Любые меры по снижению амплитуды колебаний давления, дополнительные по отношению к выпускной системе, используемой на шасси данного типа (включая глушитель и нейтрализатор), не должны влиять на работу двигателя или вызывать осаждение вредных частиц.
Для систем без изокинетического пробоотборника рекомендуется выпускная труба без изгибов и изменения сечения на участке, определяемом расстоянием не менее шести диаметров выпускной трубы до наконечника пробоотборника и трех диаметров выпускной трубы за ним (по направлению потока отработавших газов).
SP - пробоотборник (рисунки Д.11 - Д.14, Д.16, Д.17).
Внутренний диаметр пробоотборника должен быть не менее 4 мм. Отношение диаметра выпускной трубы к диаметру пробоотборника - не менее 4. Пробоотборник должен представлять собой патрубок с открытым торцом, обращенным против направления потока и расположенным на оси выпускной трубы, или же пробоотборник должен иметь несколько отверстий и соответствовать описанию в 1.2.1, компонент SP1 настоящего дополнения (см. рисунок Д.5).
ISP - изокинетический пробоотборник (рисунки Д.9, Д.10).
Изокинетический пробоотборник должен быть установлен так, чтобы его торец был обращен против направления потока и расположен на оси выпускной трубы в зоне, где обеспечиваются условия для компонента SP. Конструкция пробоотборника должна обеспечивать равномерный пропуск пробы неразбавленных отработавших газов. Внутренний диаметр пробоотборника должен быть не менее 12 мм.
Для изокинетического разделения потока отработавших газов необходима система регулирования, устанавливающая нулевую разность давлений между выпускной трубой EP и пробоотборником ISP. В этих условиях скорости потоков отработавших газов в выпускной трубе и пробоотборнике одинаковы и массовый расход через пробоотборник ISP представляет собой постоянную долю суммарного расхода отработавших газов. Пробоотборник ISP должен быть подсоединен к датчику DPT, улавливающему разность давлений. Нулевая разность давлений между выпускной трубой EP и пробоотборником ISP должна быть обеспечена регулятором расхода FC1.
FD1, FD2 - разделитель потоков (рисунок Д.14).
Комплект трубок Вентури или калиброванных отверстий устанавливают в выпускную трубу EP и в отводной патрубок TT для отвода соответствующей части потока неразбавленных отработавших газов в пробоотборник. Регулирующая система, состоящая из двух дросселей PCV1 и PCV2, регулирующих давление в выпускной трубе и туннеле для разбавления DT, необходима для соответствующего разделения потоков отработавших газов.
FD3 - разделитель потока (рисунок Д.15).
Комплект труб устанавливают в выпускную трубу для отвода соответствующей части потока неразбавленных отработавших газов в пробоотборник. Одна из труб подает отработавшие газы в туннель для разбавления DT, в то время как по другим трубам отработавшие газы выходят в демпфирующую камеру DC. Трубы должны иметь одинаковые геометрические параметры (диаметр, длину, радиусы гибки), чтобы соотношение расходов разделяемых потоков зависело только от общего числа труб. Для соответствующего разделения потоков необходима система регулирования, поддерживающая нулевую разность давлений между выходом в камеру DC труб комплекта и выходом в туннель DT патрубка TT. При этом условии скорости отработавших газов в выпускной трубе EP и разделителе FD3 соответствуют одна другой и расход в патрубке TT составляет неизменную часть полного потока отработавших газов. К датчику разности давлений должны быть подсоединены выход из патрубка TT и вход в демпфирующую камеру DC. Поддержание нулевой разности давлений обеспечивает регулятор расхода FC1.
EGA - анализатор отработавших газов (рисунки Д.11 - Д.15).
Могут быть использованы анализаторы и
.
При этом метод углеродного баланса применяют только для анализа
. Указанные анализаторы калибруют
так же, как и анализаторы для измерения выбросов вредных газообразных веществ.
Для определения различий в концентрациях допускается использовать один или
несколько анализаторов. Точность измерительных систем должна быть такой, чтобы
была обеспечена погрешность измерения расхода разбавленных отработавших газов
+/- 4%.
TT - отводящий патрубок (рисунки Д.9 - Д.17).
Отводящий патрубок должен:
- иметь возможно меньшую длину, не превышающую 5 м;
- иметь внутренний диаметр не менее диаметра пробоотборника, но не более 25 мм;
- достигать своей концевой частью осевой линии туннеля для разбавления в направлении по движению потока.
Если патрубок имеет длину не более 1 м, его необходимо изолировать материалом с максимальной теплопроводностью 0,05 Вт/(м x К) и толщиной (по радиусу), равной диаметру пробоотборника. Если патрубок имеет длину более 1 м, он должен быть изолирован и нагрет до температуры стенки не менее 523 К (250 °C).
DPT - датчик разности давлений (рисунки Д.9, Д.10, Д.15).
Датчик разности давлений должен иметь диапазон измерений не более +/- 500 Па.
FC1 - регулятор расхода.
В изокинетических системах (рисунки Д.9, Д.10) для поддержания нулевой разности давлений между выпускной трубой и пробоотборником ISP требуется регулятор расхода. Регулирование может быть осуществлено:
- управлением скоростью или расходом потока, идущего через вытяжной насос SB, и поддержанием постоянных скорости или расхода потока, идущего через нагнетательный насос PB, во всех испытательных режимах или
- регулировкой вытяжного насоса SB на постоянный расход по массе потока разбавленных отработавших газов и управлением потоком, идущим через нагнетательный насос PB, и, тем самым, потоком пробы отработавших газов в зону около наконечника патрубка TT (рисунок Д.10).
В системе с регулировкой давления остаточная ошибка в контуре регулирования должна быть не более +/- 3 Па. Колебания давления в туннеле для разбавления не должны превышать +/- 250 Па относительно среднего значения.
В системе с несколькими трубами (рисунок Д.15) регулятор расхода обеспечивает соответствующее разделение потока отработавших газов, создавая нулевую разность давления на выходе из труб комплекта и на выходе из отводящего патрубка TT. Регулирование заключается в управлении расходом потока воздуха, идущего в туннель DT, в зоне около выходного отверстия патрубка TT.
PCV1, PCV2 - дроссель, регулирующий давление (рисунок Д.14).
Для системы с двумя управляющими трубками Вентури (или двумя калиброванными отверстиями) необходимы два дросселя, регулирующих давление, для соответствующего разделения потока путем управления противодавлением в выпускной трубе EP и давлением в туннеле для разбавления DT. Один дроссель должен быть расположен в выпускной трубе за наконечником пробоотборника SP (по направлению потока), а другой - между нагнетательным насосом PB и туннелем для разбавления DT.
DC - демпфирующая камера (рисунок Д.15).
Демпфирующая камера должна быть установлена на выходе из комплекта труб для минимизации колебаний давления в выпускной трубе EP.
VN - трубка Вентури (рисунок Д.13).
Трубку Вентури устанавливают в туннеле для разбавления DT, чтобы создать отрицательное давление около выходного наконечника патрубка TT. Расход газового потока через патрубок TT, определяемый обменом энергии в зоне трубки Вентури, в основном пропорционален расходу в нагнетательном насосе PB, что способствует неизменности коэффициента разбавления. Поскольку обмен энергии зависит от температуры у выхода из патрубка TT и разности давлений в выпускной трубе EP и туннеле DT, реальный коэффициент разбавления несколько ниже при малой нагрузке, чем при высокой нагрузке.
FC2 - регулятор расхода (рисунки Д.11, Д.12, Д.16, Д.17).
Регулятор расхода может быть использован для управления расходом в
нагнетательном насосе PB и (или) в вытяжном насосе SB. К нему могут быть
подведены сигналы от потоков отработавших газов, воздуха или топлива и (или)
отдельные сигналы от или
.
При подаче воздуха под давлением (рисунок Д.16) регулятор FC2 непосредственно управляет потоком воздуха.
FM1 - расходомер (рисунки Д.9, Д.10, Д.16, Д.17).
Расходомер для газа или другие устройства, измеряющие потоки и служащие для измерения расхода разбавляющего воздуха. Расходомер FM1 является факультативным прибором, если нагнетательный насос PB калиброван для измерения расхода.
FM2 - расходомер (рисунок Д.17).
Расходомер для газа или другие устройства, измеряющие потоки и служащие для измерения расхода разбавляющего воздуха. Расходомер FM2 является факультативным прибором, если вытяжной насос SB калиброван для измерения расхода.
PB - нагнетательный насос (рисунки Д.11 - Д.14, Д.17).
Для регулирования расхода разбавляющего воздуха насос PB может быть соединен с регулятором давления FC1 или FC2. Насос PB не применяют, если используют поворотную заслонку. Нагнетательный насос PB может быть применен для измерения расхода разбавляющего воздуха, если он соответствующим образом калиброван.
SB - вытяжной насос (рисунки Д.9 - Д.11, Д.14, Д.15, Д.17).
Используется только для частичного отбора проб. Насос SB может быть применен для измерения расхода разбавленных отработавших газов, если он соответствующим образом калиброван.
DAF - фильтр разбавляющего воздуха (рисунки Д.9 - Д.17).
Рекомендуется фильтровать и очищать древесным углем разбавляющий воздух для устранения фоновых углеводородов. По требованию изготовителей двигателей и в соответствии с проверенной инженерной практикой должна быть взята проба разбавляющего воздуха для определения фоновых концентраций вредных частиц, которые затем вычитают из значений, полученных при измерении в разбавленных отработавших газах.
DT - туннель для разбавления.
Туннель для разбавления:
- должен иметь длину, достаточную для полного перемешивания отработавших газов с разбавляющим воздухом в условиях турбулентного потока;
- должен быть изготовлен из нержавеющей стали, имеющей:
отношение толщины к диаметру не более 0,025 для туннелей внутренним диаметром более 75 мм,
номинальную толщину не менее 1,5 мм для туннелей внутренним диаметром не более 75 мм;
- должен иметь диаметр не менее 75 мм для систем с частичным отбором проб;
- рекомендуется изготовлять диаметром не менее 25 мм для систем с полным отбором проб;
- может быть нагрет до температуры стенки не более 325 К (52 °C) непосредственно или с помощью предварительно нагретого разбавляющего воздуха при условии, что его температура не превышает 325 К (52 °C) перед вводом отработавших газов в туннель для разбавления;
- может иметь изоляцию.
Отработавшие газы двигателя должны быть тщательно перемешаны с разбавляющим
воздухом. Для систем с частичным отбором проб после ввода туннеля в эксплуатацию
следует проверить качество перемешивания путем измерения концентрации при работающем двигателе, по
меньшей мере, в четырех равномерно расположенных точках туннеля. При
необходимости допускается применение смесительных сопел.
Примечание. Если наружная температура около туннеля для разбавления (DT) менее 293 К (20 °C), необходимо предусмотреть меры, чтобы избежать осаждения вредных частиц на холодных стенках туннеля. Следовательно, рекомендуются нагрев и (или) изоляция туннеля в установленных выше пределах.
При высоких нагрузках на двигатель туннель может быть охлажден такими неагрессивными средствами, как вентилятор, в периоды времени, когда температура охлаждающей субстанции не опускается ниже 293 К (20 °C).
HE - теплообменник (рисунки Д.14, Д.15).
Теплообменник должен иметь объем, достаточный для поддержания температуры на входе в вытяжной насос SB в диапазоне +/- 11 К (11 °C) относительно средней рабочей температуры, наблюдаемой в испытании.
2.3. Система с полным разбавлением потока
Система, показанная на рисунке Д.18, основана на разбавлении всего потока отработавших газов в соответствии с концепцией отбора пробы постоянного объема CVS. В этом случае необходимо измерять полный объем смеси отработавших газов и разбавляющего воздуха. Допускается применять как насос с объемным регулированием PDP, так и трубку Вентури с критическим расходом CFV.
Для последующего накопления вредных частиц проба разбавленных отработавших газов должна быть направлена в систему отбора проб вредных частиц (2.4 настоящего дополнения, рисунки Д.19 и Д.20). Если это осуществляется непосредственно, то имеет место однократное разбавление. Если пробу разбавляют еще раз в дополнительном туннеле для разбавления, то такую схему относят к системе с двойным разбавлением. Эта схема полезна в случае, когда требования к температуре на поверхности фильтра не могут быть выполнены при однократном разбавлении. Несмотря на то, что система с двойным разбавлением в определенной степени относится к системам разбавления, ее описание дано в 2.4 настоящего дополнения и на рисунке Д.20, где описана система отбора проб вредных частиц, поскольку система с двойным разбавлением использует большинство компонентов типовой системы отбора проб вредных частиц.
Весь поток неразбавленных отработавших газов перемешивается с разбавляющим воздухом в туннеле для разбавления. Расход разбавленных отработавших газов измеряют с помощью либо насоса с объемным регулированием PDP, либо трубки Вентури с критическим расходом CFV. Для соответствующего выделения потока пробы, идущего в устройство для определения вредных частиц, и для определения расхода может быть использован теплообменник HE или электронный компенсатор расхода EFC. Так как определение массы вредных частиц основано на анализе полного потока разбавленных отработавших газов, отсутствует необходимость расчета коэффициента разбавления.
2.3.1. Компоненты, показанные на рисунке Д.18:
EP - выпускная труба.
Длина выпускной трубы от выпускного коллектора двигателя, выхода из турбонагнетателя или каталитического нейтрализатора до входа в туннель для разбавления должна быть не более 10 м. Если длина выпускной трубы превышает 4 м, то она, за исключением участка длиной 4 м от выпускного коллектора двигателя, выхода из турбонагнетателя или каталитического нейтрализатора, должна быть изолирована. Исключение составляет также встроенный в трубу дымомер, если его используют. Толщина изоляции должна быть не менее 25 мм. Теплопроводность изоляционного материала, измеренная при температуре 673 К (400 °C), должна быть не более 0,1 Вт/(м x К). Для уменьшения тепловой инерции выпускной трубы рекомендуется отношение толщины трубы к диаметру не более 0,015. Применение гибких секций должно ограничиваться отношением их длины к диаметру не более 12.
PDP - насос с объемным регулированием.
Насосом PDP измеряют расход всего потока разбавленных отработавших газов, основываясь на числе оборотов вала насоса и его рабочем объеме. Противодавление системы выпуска не должно искусственно понижаться насосом PDP или системой впуска разбавляющего воздуха. Статическое противодавление на выпуске, измеренное при работающем насосе PDP, должно находиться в диапазоне +/- 1,5 кПа относительно статического давления, измеренного при отсоединенном насосе PDP при тех же частоте вращения двигателя и нагрузке. Температура газовой смеси непосредственно перед входом в насос PDP должна быть в диапазоне +/- 6 К от средней рабочей температуры, наблюдаемой в испытании при отсутствии компенсатора расхода. Компенсатор расхода допускается применять только в том случае, когда температура на входе в насос PDP не превышает 323 К (50 °C).
CVF - трубка Вентури с критическим расходом.
Трубкой CVF измеряют расход всего потока разбавленных отработавших газов, устанавливая расход в условиях дросселирования (критический расход). Статическое противодавление на выпуске, измеренное при подключенной трубке CVF, должно находиться в диапазоне +/- 1,5 кПа от статического давления, измеренного при отсоединенной трубке CVF при тех же частоте вращения двигателя и нагрузке. Температура газовой смеси непосредственно перед входом в трубку CVF должна быть в диапазоне +/- 11 К от средней рабочей температуры, наблюдаемой в испытании при отсутствии компенсатора расхода.
HE - теплообменник (факультативно, если используют компенсатор EFC).
Теплообменник должен иметь объем, достаточный для поддержания температуры в указанных выше пределах.
EFC - электронный компенсатор расхода.
Если температура на входе в насос PDP или трубку CVF не поддерживается в пределах, установленных выше, требуется система компенсации расхода, обеспечивающая непрерывное измерение расхода и регулирование соответствующего разделения проб в системе отбора проб вредных частиц. С этой целью используют непрерывно измеряемые сигналы, корректирующие расход потока пробы, проходящего через фильтры для осаждения вредных частиц системы отбора проб вредных частиц PSS (см. 2.4 настоящего дополнения и рисунки Д.19 и Д.20) соответственно.
DT - туннель для разбавления.
Туннель для разбавления должен:
- иметь достаточно малый диаметр, чтобы создавать турбулентный поток (число Рейнольдса - более 4000), и достаточную длину, чтобы обеспечивать полное перемешивание отработавших газов с разбавляющим воздухом; допускается использование перемешивающих насадок;
- иметь диаметр не менее 460 мм при системе однократного разбавления;
- иметь диаметр не менее 210 мм при системе двойного разбавления;
- быть изолирован.
Отработавшие газы двигателя должны при входе в туннель быть направлены по потоку и полностью перемешаны.
В системе однократного разбавления проба из туннеля для разбавления перетекает в систему отбора проб вредных частиц PSS (2.4 настоящего дополнения и рисунок Д.19).
В системе двойного разбавления проба из туннеля для разбавления перетекает в дополнительный туннель для дальнейшего разбавления, а затем проходит в фильтры для осаждения вредных частиц (2.4 настоящего дополнения и рисунок Д.20). Пропускная способность насоса PDP или трубки CFV должна быть достаточной для протекания разбавленного потока отработавших газов через туннель DT при температуре не более 464 К (191 °C) в зоне входа в пробоотборник. Система дополнительного разбавления должна обеспечивать подачу достаточного количества дополнительного разбавляющего воздуха, чтобы поддерживать температуру дважды разбавленного потока отработавших газов не более 325 К (52 °C) непосредственно перед первым фильтром для осаждения вредных частиц.
DAF - фильтр разбавляющего воздуха.
Рекомендуется фильтровать и очищать древесным углем разбавляющий воздух для устранения фоновых углеводородов. По требованию изготовителей двигателей и в соответствии с проверенной инженерной практикой должна быть взята проба разбавляющего воздуха для определения фоновых концентраций вредных частиц, которые затем вычитают из значений, полученных при измерении в разбавленных отработавших газах.
PSP - пробоотборник для вредных частиц.
Пробоотборник - основная часть патрубка отвода вредных частиц PTT. Пробоотборник:
- должен быть установлен так, чтобы его торец был направлен против потока, в зоне, где разбавляющий воздух и отработавшие газы хорошо перемешиваются, а именно, на оси туннеля для разбавления DT на расстоянии, приблизительно, 10 диаметров по направлению потока от той точки, где отработавшие газы входят в туннель для разбавления;
- должен иметь внутренний диаметр не менее 12 мм;
- может быть подогрет, однако температура его стенок не должна превышать 325 К (52 °C). Подогрев может быть как непосредственным, так и с помощью предварительно нагретого разбавляющего воздуха при условии, что температура воздуха не превышает 325 К (52 °C) перед входом в разбавляющий туннель отработавших газов;
- может иметь изоляцию.
2.4. Система отбора проб вредных частиц PSS
Система отбора проб вредных частиц необходима для их осаждения на фильтре для отбора вредных частиц. В случае полного отбора проб и частичного разбавления потока отработавших газов, когда часть потока отработавших газов, подвергнутая разбавлению, является пробой и целиком проходит через фильтр, система разбавления (2.2 настоящего дополнения, рисунки Д.12 и Д.16) и система отбора проб составляют, как правило, единый блок. В случае частичного отбора проб и частичного или полного разбавления потока отработавших газов, когда через фильтр проходит только часть разбавленных отработавших газов, система разбавления (2.2 и 2.3 настоящего дополнения и рисунки Д.9 - Д.11, Д.13 - Д.15, Д.17, Д.18) и система отбора проб, как правило, составляют отдельные блоки.
В настоящем стандарте блок повторного разбавления (рисунок Д.20) системы полного разбавления потока рассматривают как модификацию типовой системы отбора проб вредных частиц (см. рисунок Д.19). Система дополнительного разбавления включает в себя все основные элементы системы отбора проб вредных частиц, такие как фильтродержатели, насос перекачки проб, а также некоторые элементы, служащие для разбавления, такие как детали для подачи разбавляющего воздуха и туннель для дополнительного разбавления.
Во избежание любых помех в контурах регулирования рекомендуется, чтобы насос для перекачки проб работал в течение всей процедуры испытаний. В случае применения метода с одним фильтром следует использовать систему с обходным каналом, чтобы направлять пробы к фильтрам для отбора проб в соответствующие моменты времени. Влияние процедуры переключения потоков на контуры регулирования необходимо свести к минимуму.
Проба разбавленных отработавших газов (см. рисунок Д.19) отбирается из туннеля для разбавления DT системы полного или частичного разбавления и пропускается через пробоотборник вредных частиц PSP и патрубок отвода вредных частиц PTT с помощью насоса для перекачки пробы P. Проба проходит через фильтродержатель (фильтродержатели) FH, содержащий фильтры для осаждения проб вредных частиц. Расход потока пробы контролируется регулятором расхода FC3. Если используют электронный компенсатор расхода EFC (см. рисунок Д.18), расход разбавленных отработавших газов служит управляющим сигналом для регулятора FC2.
Проба разбавленных отработавших газов (см. рисунок Д.20) направляется из туннеля для разбавления DT системы полного разбавления потока через пробоотборник вредных частиц PSP и патрубок отвода вредных частиц PTT в туннель для дополнительного разбавления SDT, где она разбавляется вторично. Затем проба проходит через фильтродержатель (фильтродержатели) FH, где установлены фильтры для осаждения вредных частиц. Расход разбавляющего воздуха, как правило, постоянный, поскольку расход пробы контролируется регулятором расхода FC3. Если используют электронный компенсатор расхода EFC (см. рисунок Д.18), то суммарный расход разбавленных отработавших газов служит управляющим сигналом для регулятора FC3.
2.4.1. Компоненты, показанные на рисунках Д.19 и Д.20:
PTT - патрубок отвода вредных частиц (рисунки Д.19 и Д.20).
Длина патрубка отвода вредных частиц должна быть минимальной и не превышать 1020 мм. Где это применимо (например, для систем с частичным разбавлением потока и с частичным отбором проб и систем с полным разбавлением потока), длина пробоотборника (SP, ISP, PSP - см. 2.2 и 2.3 настоящего дополнения) должна быть включена в общую длину патрубка PTT.
Длину патрубка PTT определяют:
- для системы с частичным разбавлением потока и частичным отбором проб и систем с полным однократным разбавлением потока - от наконечника пробоотборника (SP, ISP, PSP соответственно) до входа в фильтродержатель;
- для систем с частичным разбавлением потока и полным отбором проб - от окончания туннеля для разбавления до входа в фильтродержатель;
- для систем с полным двукратным разбавлением потока - от наконечника пробоотборника PSP до туннеля для повторного разбавления.
Патрубок отвода:
- может быть подогрет, однако температура его стенок не должна превышать 325 К (52 °C). Подогрев может быть как непосредственным, так и предварительно нагретым разбавляющим воздухом при условии, что его температура не превышает 325 К (52 °C) перед поступлением в туннель для разбавления отработавших газов;
- может быть изолирован.
SDT - туннель для дополнительного разбавления (рисунок Д.20).
Туннель для дополнительного разбавления должен иметь диаметр не менее 75 мм и быть достаточной длины для того, чтобы обеспечить время задержки дважды разбавленной пробы не менее 0,25 с. Первичный фильтродержатель FH должен быть расположен на расстоянии не более 300 мм от выхода из туннеля SDT.
Туннель для дополнительного разбавления:
- может быть подогрет, однако температура его стенок не должна превышать 325 К (52 °C). Подогрев может быть как непосредственным, так и предварительно нагретым разбавляющим воздухом при условии, что его температура не превышает 325 К (52 °C) перед поступлением в туннель для разбавления отработавших газов;
- может быть изолирован.
FH - фильтродержатель (фильтродержатели) (рисунки Д.19 и Д.20).
Для основного и дополнительного фильтров могут быть использованы общие или отдельные фильтродержатели. Должны быть выполнены требования 4.1.3 дополнения 4 к Приложению Д.
Фильтродержатель (фильтродержатели):
- может быть подогрет, однако температура его стенок не должна превышать 325 К (52 °C). Подогрев может быть как непосредственным, так и предварительно нагретым разбавляющим воздухом при условии, что его температура не превышает 325 К (52 °C) перед поступлением в туннель для разбавления отработавших газов;
- может быть изолирован.
P - насос для перекачки проб (рисунки Д.19 и Д.20).
Насос для перекачки проб вредных частиц должен быть расположен на расстоянии от туннеля для разбавления, достаточном для поддержания постоянной температуры на входе в насос с предельными отклонениями +/- 3 К, если не предусмотрена коррекция расхода с помощью регулятора FC3.
DP - насос для подачи разбавляющего воздуха (рисунок Д.20).
Насос для подачи разбавляющего воздуха должен быть расположен так, чтобы воздух для дополнительного разбавления имел температуру 298 К +/- 5 К (25 °C +/- 5 °C), если он не был подогрет предварительно.
FC3 - регулятор расхода (рисунки Д.19 и Д.20).
Регулятор расхода применяют для компенсации влияния на расход пробы вредных частиц изменений температуры и противодавления в пробоотборной магистрали в случае невозможности использования других средств. Регулятор расхода необходим при использовании компенсатора EFC (рисунок Д.18).
FM3 - расходомер (рисунки Д.19 и Д.20).
Газовый расходомер или другое устройство для измерения расхода пробы вредных частиц должно быть расположено на достаточном расстоянии от насоса для перекачки проб P, так чтобы температура газа на входе оставалась постоянной с предельными отклонениями +/- 3 К, если коррекция с помощью регулятора FC3 не применена.
FM4 - расходомер (рисунок Д.20).
Газовый расходомер или другое устройство для измерения расхода разбавляющего воздуха располагают так, чтобы температура газа на входе составляла 298 К +/- 5 К (25 °C +/- 5 °C).
BV - шаровой затвор (факультативно, рисунки Д.19 и Д.20).
Шаровой затвор должен иметь внутренний диаметр не менее чем внутренний диаметр патрубка отвода вредных частиц PTT и время переключения менее 0,5 с.
Примечание. Если наружная температура около пробоотборника PSP, патрубка PTT, туннеля SDT и фильтродержателей FH менее 293 К (20 °C), необходимо предусмотреть меры, исключающие осаждение вредных частиц на холодных стенках этих устройств. Поэтому рекомендуют подогрев и (или) изоляцию указанных устройств в границах, устанавливаемых соответствующими предписаниями. Рекомендуется также, чтобы температура на поверхности фильтра в процессе осаждения пробы была не менее 293 К (20 °C).
При работе двигателя при высоких нагрузках вышеупомянутые устройства можно охлаждать неагрессивными средствами, такими как вентилятор, если температура охлаждающей субстанции не опускается ниже 293 К (20 °C).
3. Определение дымности
3.1. Введение
Подразделы 3.2, 3.3 настоящего дополнения и рисунки Д.21 и Д.22 содержат подробные описания рекомендуемых дымомеров. Поскольку на дымомерах различных модификаций могут быть получены эквивалентные результаты, точное соответствие дымомера рисункам Д.21 и Д.22 не требуется. Допускается использование дополнительных компонентов, таких как измерительная аппаратура, клапаны, соленоиды, насосы и переключатели, для получения дополнительной информации и для координации функций отдельных систем. Другие компоненты, функционирование которых не вызвано необходимостью обеспечить точность работы отдельных систем, могут быть исключены, если их исключение основано на проверенной инженерной практике.
Рисунок Д.21. Полнопоточный дымомер
Рисунок Д.22. Дымомер на частичном потоке
Принцип измерения дымности заключается в том, что параметры светового луча, проходящего сквозь дымовой столб определенной длины, измеряют и часть этого первоначального луча, достигшую светоприемника, используют для оценки параметров светопоглощения среды. Способы измерения дымности зависят от конструкции аппаратуры, и это измерение может быть проведено в выпускной трубе (полнопоточный встроенный дымомер) или на концевой части выпускной трубы (полнопоточный концевой дымомер), или путем отвода пробы из выпускной трубы (дымомер на частичном потоке). Для определения коэффициента светопоглощения по сигналу затухания изготовитель инструмента должен указать оптическую базу дымомера.
3.2. Полнопоточный дымомер
Могут быть использованы полнопоточные дымомеры двух основных типов (рисунок Д.21). При встроенном дымомере измеряют светопоглощение полного дымового заряда, находящегося в выпускной трубе вместе с отработавшими газами. В дымомере этого типа эффективная оптическая база определяется конструкцией дымомера.
При концевом дымомере светопоглощение полного дымового заряда измеряют на выходе из выпускной трубы. В дымомере этого типа эффективная оптическая база определяется конструкцией выпускной трубы и расстоянием между торцом выпускной трубы и дымомером.
3.2.1. Компоненты дымомера, изображенные на рисунке Д.21:
EP - выпускная труба.
При использовании встроенного дымомера не должно быть никаких изменений диаметра выпускной трубы на участках длиной до трех диаметров выпускной трубы до входа в зону измерений и за выходом из нее. Если диаметр зоны измерений больше диаметра выпускной трубы, рекомендуется плавный переход от выпускной трубы к зоне измерений перед входом в эту зону.
В случае использования концевого дымомера концевая часть выпускной трубы длиной 0,6 м должна иметь круглое поперечное сечение и на этом участке не должно быть изгибов и колен. Торец выпускной трубы должен быть обрезан перпендикулярно к оси трубы. Дымомер должен быть установлен по оси выходящего из трубы дымового заряда на расстоянии (25 +/- 5) мм от торца выпускной трубы.
OPL - оптическая база дымомера.
Длина пути, проходимого лучом в дымомере через задымленное пространство от источника света до светоприемника, корректированная, если требуется, с учетом неравномерной плотности и краевого эффекта. Оптическую базу дымомера устанавливает его изготовитель с учетом любых мер, принимаемых против образования сажи (например, использования продувочного воздуха). Если оптическая база дымомера неизвестна, ее определяют в соответствии с [4], пункт 11.6.5. Для правильного определения оптической базы дымомера необходимо обеспечить скорость потока не менее 20 м/с.
LS - источник света.
Источником света должна быть лампа накаливания с цветовой температурой от 2800 К до 3250 К или светодиод, излучающий зеленый свет (LED) с пиком спектра в диапазоне от 550 до 570 нм. Источник света должен быть защищен от отложений сажи средствами, которые не влияют на оптическую базу, выводя ее за пределы диапазона, установленного изготовителем.
LD - фотоприемник.
Фотоприемником должен быть фотоэлемент или фотодиод (с фильтром, если это необходимо). В случае использования лампы накаливания в качестве источника света светоприемник должен иметь пиковую спектральную реакцию, подобную фототопической реакции человеческого глаза (максимальную реакцию) в диапазоне от 550 до 570 нм с уменьшением до значений, составляющих менее 4% максимальной реакции, в диапазонах спектра ниже 430 нм и выше 680 нм. Фотоприемник должен быть защищен от отложений сажи средствами, которые не влияют на оптическую базу, выводя ее за пределы диапазона, установленного изготовителем.
CL - коллиматорная линза.
Излучаемый световой пучок должен быть конвертирован в луч, имеющий в сечении максимальный диаметр 30 мм. Расхождение луча не должно выходить за пределы конуса с углом отклонения от оптической оси 3°.
T1 - датчик температуры (факультативно).
Температура отработавших газов может быть измерена в процессе испытания.
3.3. Дымомер на частичном потоке
В случае дымомера на частичном потоке (рисунок Д.22) представительная проба отработавших газов, отобранная из выпускной трубы, проходит через отводящий патрубок в измерительную камеру. В дымомере данного типа эффективная оптическая база зависит от конструкции дымомера. Значения времени реакции, указанные в следующем пункте, применимы к минимальному расходу газов, проходящих через дымомер, устанавливаемому изготовителем прибора.
3.3.1. Компоненты, показанные на рисунке Д.22:
EP - выпускная труба.
Выпускная труба должна быть прямой на участке длиной не менее шести диаметров трубы до наконечника пробоотборника и на участке длиной не менее трех диаметров трубы за этим наконечником (по направлению потока).
SP - пробоотборник.
Пробоотборник должен иметь открытый торец, обращенный против направления потока, расположенный на оси выпускной трубы или вблизи нее. Расстояние между отводящим патрубком и стенкой выпускной трубы должно быть не менее 5 мм. Диаметр отверстия пробоотборника должен обеспечивать отбор репрезентативной пробы и достаточно интенсивный поток через дымомер.
TT - отводящий патрубок.
Отводящий патрубок должен:
- иметь возможно меньшую длину и обеспечивать температуру отработавших газов 373 К +/- 30 К (100 °C + 30 °C) на входе в измерительную камеру;
- иметь температуру стенок выше точки росы отработавших газов на значение, достаточное для предотвращения конденсации;
- меть по всей длине диаметр, равный диаметру пробоотборника;
- иметь время реакции (см. определение в 5.2.4 дополнения 4 к Приложению Д) менее 0,05 с при минимальном потоке, проходящем через дымомер;
- не оказывать существенного влияния на максимум дымности.
FM - расходомер.
Прибор для определения реального расхода в измерительной камере. Минимальное и максимальное значения расхода должен устанавливать изготовитель расходомера, и они должны быть такими, чтобы удовлетворять требованиям к времени реакции отводящего патрубка и оптической базе. Расходомер может быть расположен около насоса для перекачки проб P, если его применяют.
MC - измерительная камера.
Измерительная камера должна иметь не дающую отражения внутреннюю поверхность или окружающее пространство с аналогичными свойствами. Попадание постороннего света на фотоприемник из-за внутренних отблесков при диффузии света должно быть сведено к минимуму.
Давление газа в измерительной камере не должно отличаться от атмосферного давления более чем на 0,75 кПа. Там, где это условие не может быть выполнено из-за особенностей конструкции, показания дымомера должны быть приведены к атмосферному давлению.
Температуру стенок измерительной камеры следует поддерживать неизменной от 343 К (70 °C) до 373 К (100 °C) с отклонениями от устанавливаемого значения +/- 5 К, но в любом случае выше точки росы отработавших газов на значение, достаточное для предотвращения конденсации.
Измерительная камера должна быть оборудована соответствующими устройствами для измерения температуры.
OPL - оптическая база.
Длина пути, проходимого лучом в дымомере через задымленное пространство от источника света до светоприемника, корректированная, при необходимости, с учетом неравномерной плотности и краевого эффекта. Оптическую базу дымомера устанавливает его изготовитель с учетом любых мер, принимаемых против образования сажи (например, использования продувочного воздуха). Если оптическая база дымомера неизвестна, ее определяют в соответствии с [4], пункт 11.6.5.
LS - источник света.
Источником света должна быть лампа накаливания с цветовой температурой от 2800 К до 3250 К или светодиод, излучающий зеленый свет (LED) с пиком спектра в диапазоне от 550 до 570 нм. Источник света должен быть защищен от отложений сажи средствами, которые не влияют на оптическую базу, выводя ее за пределы диапазона, установленного изготовителем.
LD - фотоприемник.
Фотоприемником должен быть фотоэлемент или фотодиод (с фильтром, если это необходимо). В случае использования лампы накаливания в качестве источника света светоприемник должен иметь пиковую спектральную реакцию, подобную фототопической реакции человеческого глаза (максимальную реакцию) в диапазоне от 550 до 570 нм с уменьшением до значений, составляющих менее 4% максимальной реакции, в диапазонах спектра ниже 430 нм и выше 680 нм. Фотоприемник должен быть защищен от отложений сажи средствами, которые не влияют на оптическую базу, выводя ее за пределы диапазона, установленного изготовителем.
CL - коллиматорная линза.
Излучаемый световой пучок должен быть конвертирован в луч, имеющий в сечении максимальный диаметр 30 мм и параллельный оптической оси. Отклонения границ луча от этой оси не должны превышать 3°.
T1 - датчик температуры.
Для отслеживания температуры отработавших газов на входе в измерительную камеру.
P - насос для перекачки пробы (факультативно).
За измерительной камерой (по направлению потока) может быть установлен насос для перекачки пробы через измерительную камеру.